Dynamics of a producer-grazer model incorporating the effects of excess food nutrient content on grazer's growth.
نویسندگان
چکیده
Modeling under the framework of ecological stoichiometric allows the investigation of the effects of food quality on food web population dynamics. Recent discoveries in ecological stoichiometry suggest that grazer dynamics are affected by insufficient food nutrient content (low phosphorus (P)/carbon (C) ratio) as well as excess food nutrient content (high P:C). This phenomenon is known as the "stoichiometric knife edge." While previous models have captured this phenomenon, they do not explicitly track P in the producer or in the media that supports the producer, which brings questions to the validity of their predictions. Here, we extend a Lotka-Volterra-type stoichiometric model by mechanistically deriving and tracking P in the producer and free P in the environment in order to investigate the growth response of Daphnia to algae of varying P:C ratios. Bifurcation analysis and numerical simulations of the full model, that explicitly tracks phosphorus, lead to quantitative different predictions than previous models that neglect to track free nutrients. The full model shows that the fate of the grazer population can be very sensitive to excess nutrient concentrations. Dynamical free nutrient pool seems to induce extreme grazer population density changes when total nutrient is in an intermediate range.
منابع مشابه
A stoichiometric producer-grazer model incorporating the effects of excess food-nutrient content on consumer dynamics.
There has been important progress in understanding ecological dynamics through the development of the theory of ecological stoichiometry. For example, modeling under this framework allows food quality to affect consumer dynamics. While the effects of nutrient deficiency on consumer growth are well understood, recent discoveries in ecological stoichiometry suggest that consumer dynamics are not ...
متن کاملTransient dynamics of pelagic producer-grazer systems in a gradient of nutrients and mixing depths.
Phytoplankton-grazer dynamics are often characterized by long transients relative to the length of the growing season. Using a phytoplankton-grazer model parameterized for Daphnia pulex with either flexible or fixed algal carbon:nutrient stoichiometry, we explored how nutrient and light supply (the latter by varying depth of the mixed water column) affect the transient dynamics of the system st...
متن کاملStability and Bifurcation in a Stoichiometric Producer-Grazer Model with Knife Edge
All organisms are composed of multiple chemical elements such as nitrogen (N), phosphorus (P), and carbon (C). P is essential to build nucleic acids (DNA and RNA) and N is needed for protein production. To keep track of the mismatch between the P requirement in the consumer (grazer) and the P content in the provider (producer), stoichiometric models have been constructed to explicitly incorpora...
متن کاملStoichiometric Producer-grazer Models with Varying Nitrogen Pools and Ammonia Toxicity
We formulate and analyze a stoichiometric model of producergrazer systems with excess nutrient recycling (waste) that may inhibit grazer survival and growth. Specifically, we model the intoxication dynamics caused by accumulation of grazer waste and dead biomass decay. This system has a range of applications, but we focus on those in which the producers are microalgae and the limiting nutrient ...
متن کاملNutrient Enrichment and Food Web Composition Affect Ecosystem Metabolism in an Experimental Seagrass Habitat
BACKGROUND Food web composition and resource levels can influence ecosystem properties such as productivity and elemental cycles. In particular, herbivores occupy a central place in food webs as the species richness and composition of this trophic level may simultaneously influence the transmission of resource and predator effects to higher and lower trophic levels, respectively. Yet, these int...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Bulletin of mathematical biology
دوره 76 9 شماره
صفحات -
تاریخ انتشار 2014